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Abstract

本文基于 1985 年 1 月至 2022 年月的美股市场的 207 项异象 (因子)，采用线性回归、预
测组合算法、Lasso 回归、岭回归、弹性网络回归、偏最小二乘回归、支持向量机、梯度提
升树、极端梯度提升树、集成神经网络等 10 种机器学习算法，构建股票收益预测模型及
投资组合。实证结果显示，机器学习算法能够有效地识别异象 (因子) 与收益之间的关系，
能够获得优于市场组合 (以 SP500 为例) 的收益，非线性机器学习算法普遍优于线性机器
学习算法，但 Ridge和 LR在扩展训练期后仍然有着较好的收益，推测异象-收益之间存在
某种较强的“线性关联”。本文进一步检验了异象 (因子) 在机器学习算法中的重要性，发
现与收益 (Return) 相关的异象 (因子) 有较强的预测能力。
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1. 引言

预测问题是资产定价的核心。为了给股票定价，投资者必须预测公司未来的现金流量。

寻求表现出色的交易策略的投资者寻找预测资产回报的信号。测试资产定价模型的研究人

员寻找预测变量，这些变量可以预测资产之间的回报差异，或者捕捉不同时间回报的可预

测变化。

学术界对因子的研究可以追溯到 20 世纪 30 年代。Graham and Dodd(1934) 在他们

的著作 S ecurity Analysis（证券分析）[1] 中提出了价值溢价的概念，60 年代和 70 年代，

CAPM 和 APT 相继被提出，为研究因子提供了定量分析方法。Basu(1977)[2] 发现“低价
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股效应”，Banz(1981)[3] 发现“小市值效应”, 这些现象与主流的有效市场假说相违背，因

此被称为异象。Fama and French(1992)[4] 将这两个异象整合起来，与市场因子共同构成

了经典的三因子模型，成为全球各国股票市场实证资产定价研究的基准模型。基于 Fama

and French(1992)[4] 的研究，很多新的模型先后被提出：Carhart(1997)[5] 在 Fama-French

三因子模型的基础上加入了截面动量因子 (MOM)，提出了 Carhart 四因子模型。Novy-

Marx(2013)[6] 指出盈利能力和未来预期收益密切相关，提出了他们的四因子模型。Hou et

al. (2015)[7]从实体投资经济学理论出发，提出了新的四因子模型 (q-因子模型)。Fama and

French(2015)[8] 在 Fama-French 三因子模型的基础上添加了盈利和投资两个因子，提出了

新的五因子模型。

在实证资产定价领域过去几十年的研究中，人们挖掘了数百个能够提供超额收益的异

象 (因子）以及能够较好预测股票收益的变量，也因此产生了“因子动物园”的说法 (Camp-

bell and Liu , 2019[9])，许多学者使用组合排序 (Portfolio Sort) 和 Fama-MacBeth(FM) 回

归等方法检验异象，例如，Hou, Xue and Zhang(2020）[10] 检验了 452 个异象，发现 65%

的异象无法通过 |t| ≥ 1.96的单一测试。Chen and Zimmermann(2021) [11]开源了 207个因

子，发现复现的 t统计量对原始多空组合的 t统计量的回归斜率为 0.88，R2为 82%。现存

的异象 (因子）、预测变量数量是众多的，但在过去很长的一段时间，资产定价研究一直仅

仅关注低维的模型。例如，横截面股票收益预测的工作主要集中在具有少量公司特征的回

归上，研究人员调查了大量公司特征的预测能力，但在任何个别研究中，研究人员考虑的

预测因素的数量通常很少。同样，研究人员希望通过因子模型来总结股票收益横截面中的

投资机会，并将重点放在具有极少数因子的模型上。例如，Hou, Xue and Zhang(2015）[7]

以及 Fama and French(2015）[8] 在其因子模型中除了价值加权市场投资组合超额收益外，

仅包括三四个因子，这些因子是根据公司规模、盈利能力、投资或公司账面市值比等公司

特征构建的投资组合。对模型施加极端的稀疏性，使得传统的统计方法表现良好，但缺遗

漏了大量的信息 (单独的以及联合的影响），从 Fama and French(1992)[4] 提出的三因子模

型，到近期 Roy and Shijin(2018)[12] 提出的六因子模型，我们也可以发现学术界在慢慢适

应“遗漏信息”的现实因素。

近年来，机器学习方法的兴起，提供了无需对预测问题施加极端的稀疏性限制的机会，
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允许学者们考虑大量预测变量的联合效应, 推动了实证资产定价领域的发展。Jiang, Tang

and Zhou (2019)[13]使用了 FM回归、主成分分析 (PCA)、偏最小二乘法 (PLS)、预测组合

方法 (FC)，从中国市场上 75 个公司特征中提取信息，发现与交易摩擦、动量和盈利能力

相关的公司特征是中国股市未来股票回报的最有效预测指标。Gu, Kelly and Xiu (2021)[14]

使用了自动编码器神经网络模型将来自资产特征等协变量与资产回报结合起来，取得了较

小的资产定价模型的样本外定价误差。Zhang (2022)[15] 使用公司特征、系统性风险和宏

观经济作为预测信号，发现具有记忆机制和 Transformer 的 RNN 在预测性方面具有最佳

性能，而 CNN 的性能相对其他的 NN 模型较差。Gu, Kelly and Xiu (2020)[16] 使用机器

学习预测向投资者展示了巨大的经济收益，并确定了性能最佳的方法 (树和神经网络）。李

斌等 (2019)[17] 使用 12 种机器学习算法 (包括线性与非线性监督学习模型）构建股票收益

预测模型及投资组合，实证结果显示使用机器学习算法构建的投资策略能够获得比传统线

性算法和所有单因子更好的投资绩效。

本文计划解决的第一个问题是：机器学习算法能否有效地识别出异象 (因子) 和超额

收益间的线性和非线性关系，并依据预测构建的投资组合能够获得更好的绩效? 根据机器

学习理论中的“没有免费的午餐定理”(No Free Lunch Theorem）(Wolpert，1996)[18]，本

文无法预先知道哪个算法在使用基本面异象 (因子）预测股票收益的问题中会表现得更好，

因此，基于 1985 年 1 月至 2020 年 11 月美股市场的 207 项异象 (因子)，本文采用线性回

归、预测组合算法、Lasso 回归、岭回归、弹性网络回归、偏最小二乘回归、支持向量机、

梯度提升树、极端梯度提升树、集成神经网络等 10 种机器学习算法，构建股票收益预测

模型及投资组合，系统性地运用线性及非线性监督学习算法检验美国市场基本面异象与的

股票收益的预测问题。

2011 年 John Cochrane 在美国金融协会主席演讲时 (Cochrane,2011)[19] 提出了三个

至关重要的问题，其一为：“哪些因子是重要的?”因此，本文计划解决的第二个问题是如果

机器学习能够获得更好的投资绩效，哪些因子起了重要作用? 由于时间和算力的限制，我

们暂时仅采用 Linear Regression 方法进行检验，但可能由于 ols 自身效果不理想，导致我

们检验的因子重要性差异不是很明显，需要进一步使用本文的全部算法对异象 (因子) 重

要性进行检验。
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本文的正文部分是这样安排的，根据我们的两个研究问题，分为三个部分：第二部分

(2) 为研究设计，阐述模型的训练过程、机器学习算法的简要说明，并阐述数据的预处理

步骤，对数据进行简要的描述性统计；第三部分 (3) 为机器学习算法的有效性检验（即探

究第一个问题），对算法的样本外预测情况进行说明，利用机器学习算法的预测结果进行

投资，分析投资绩效，检验滑动窗口不同窗口期的设定，对模型训练以及投资绩效的影响；

第四部分（4）为异象 (因子) 的重要性检验（即探究第二个问题），我们分析了较为重要的

因子及其背后可能的成因。

2. 研究设计

2.1. 模型总体设计

我们使用美股市场的 207 个异象 (因子) 值，以收益率为目标进行监督学习算法的训

练，标准的函数形式如下：

Ri,t = f (xi,t−1; θ) + ϵi,t (1)

其中, f (·) 定义为参数为 θ 的函数，在本文中为 10 种机器学习算法的函数形式，Ri,t 为股票

i第 t 期的收益，xi,t−1 = (xi,t−1,1, xi,t−1,2, · · · , xi,t−1,N)为公司 i在第 t−1期的异象因子向量，ϵi,t

为误差项，本文将在下一部分介绍所使用的 10 种机器学习算法。

Figure 1: 滑动窗口法训练示意图 [窗口期 =12, 步长 =1]
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对于每一个具体的函数形式 f (·)，我们将使用历史数据对模型进行训练，采用滑动窗

口法划分训练集和测试集，如 Figure 1 所示。模型的训练与测试步骤如下：（1）当我们的

滑动窗口设定窗口期为 12 个月，步长为 1 个月时，当我们要预测 1986 年 1 月的收益数

据时，我们利用过去 12 个月（即 1985 年 1 月至 1985 年 12 月）的当月异象（因子）值匹

配下月的收益率数据，得到训练集，训练我们的函数形式 f (·)，得到模型参数。（2）使用

训练好的模型，将 1985 年 12 月的异象（因子）数据带入模型，得到模型对 1986 年 1 月

的股票收益的预测。（3）重复前两个步骤，共有 419 个训练集和测试集，训练后得到 1986

年 1 月至 2020 年 11 月每个月的每家公司当月股票收益的预测值。

在训练机器学习模型时，针对参数 θ 采用网格调参 (Grid Search) 的方法。首先设定

一个初始参数池，然后在训练集上针对每个参数训练得到多空组合的收益，筛选得到最优

参数。理论上，随着窗口的滑动，每个模型的最优参数也会随之改变。由于每一期网格搜

索的计算成本较高，本文参考李斌等（2019）[17] 的做法，仅在第一个滑动窗口的训练集

中进行调参。在此后的窗口滑动过程中，模型参数保持不变。所以，在本研究中，不同时

期的模型最优参数是固定的，即为第一个滑动窗口训练所得的最优参数。

针对训练样本做一点说明，模型的训练集（以 window=12 月为例）是 12 个月的每家

公司的 219个异象与次月收益的组合，即假设每个月有 2000家公司，则我们的训练集共有

2000×12 = 24000个样本，共有 2000×12 = 24000个收益率值，共有 2000×12×219 = 5256000

个异象（因子）值。而并不是用每一家公司的 12个月数据训练一次模型，将所有公司的结

果集合。这样做的好处是便于模型的训练，同时也便于我们探究机器学习模型是否能够识

别异象与收益率之间的线性、非线性关系。

2.2. 机器学习算法说明

本部分将对本文所使用的 10 个线性与非线性监督学习算法的内容进行简要说明。

2.2.1. 线性回归 (Linear Regression, LR)

线性回归（Linear Regression）在因变量（Y）和一个或多个自变量（X）之间建立一

种线性关系，Y = β0 + β1X1 + β2X2 + . . . + βnXn = β
T X。对于给定的样本 Xi，因变量真实值

Lenovo
高亮

Lenovo
高亮
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为 Yi，预测值为 Ŷi = β
T Xi。将函数的损失函数定义为平方损失函数，

Loss (β) =
1
m

m∑
i=1

(Ŷi − Yi)
2 (2)

其中 m 为有效样本数量。通过最小化目标损失函数，即 argmin
∑m

i=1(Ŷi − Yi)
2
，即可求解方

程最优拟合系数 β 值。本文将其简称为 OLS 算法，并作为基准模型与各类机器学习算法

进行对比。

2.2.2. 预测组合模型 (Forecast Combination, FC)

预测组合模型 (Forecast Combination, FC) 的主要思想是通过对自变量不同的预测模

型进行加权平均构成整体预测模型，其核心在于加权系数。目前常用的加权方法有算术平

均法、最优权数法和方差倒数法等。在本文中，FC 模型由以单一因子作为自变量的 OLS

模型构成，具体构建和预测方式如下：

1. 在训练集上，分别训练单个因子为自变量的最小二乘模型 OLS1, OLS 2,OLS3, . . . ,OLSn。

2. 在测试集上，运用所得的 n 个模型分别预测收益率，并取所有模型预测的均值作为

最终预测。

尽管单变量 OLS 模型训练成本小，但其样本外预测不稳定；而将其组合后的 FC 模

型能够提升样本外预测的稳定性。预测组合模型在金融研究中已有应用，如 Rapach et

al.(2010)[20] 运用预测组合模型组合了基于各个因子的单变量回归模型，根据 FC 模型预

测所构成的投资组合绩效优于基于 OLS 模型所构建的投资组合。

2.2.3. 岭回归 (ridge regression，Ridge)

岭回归 (ridge regression，Ridge)同样是线性模型，其在标准线性回归损失函数的基础

上加入 L2 范数正则化项，即

Loss (β) =
1
m

m∑
i=1

(Ŷi − Yi)
2
+ γ ||β||22 (3)
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其中 γ > 0。通过在损失函数中增加 L2 范数正则化项约束参数以降低模型复杂度，可

以防止过拟合，并增强了模型的样本外预测能力。通过最小化损失函数即可求解方程最优

拟合系数 β 值。

2.2.4. Lasso 回归 (Least absolute shrinkage and selection operator，Lasso)

Lasso回归（Least absolute shrinkage and selection operator，Lasso）也是线性模型，其

在损失函数中增加一个正则项 L1 范数，即向量中各元素的绝对值之和作为正则化项，即：

Loss (β) =
1
m

m∑
i=1

(Ŷi − Yi)
2
+ γ| |β| |1 (4)

其中 γ > 0。相较于 L2 范数而言，L1 范数更易获得稀疏解，因此 Lasso 也常被用于高

维数据的特征筛选。在回归过程中，越重要的特征对应的系数绝对值越大，而与输出变量

相关性越低的特征，系数就越接近于 0。

在金融领域，Feng et al.(2020)[21]运用 LASSO进行的因子筛选方法，成功选出了具有

更高统计显著性的因子类别；Messmer and Audrino(2017)[22]则在美国市场采用了 LASSO

算法的变种 Adaptive LASSO 从 68 个公司特征因子中筛选出了 14 个公司特征，并保有了

不亚于 68 个公司特征的解释能力。

2.2.5. 弹性网络回归 (ElasticNet Regression, Elastic)

弹性网络回归（ElasticNet Regression, Elastic）综合了 Lasso 和岭回归两种算法，同

时使用 L1 和 L2 正则化，其损失函数可以表示为：

Loss (β) =
1
m

m∑
i=1

(Ŷi − Yi)
2
+ α ∗ l1ratio ∗ ||β||1 + 0.5 ∗ α ∗ (1 − l1ratio) ∗ ||β||22 (5)

不同于 Lasso 将部分系数清零的做法，弹性网络回归鼓励在高度相关变量时的群体效

应。当多个特征和另一个特征相关的情形下弹性网络往往能够取得较好的预测效果，Lasso

倾向于随机选择其中一个特征，而弹性网络更倾向于选择两个特征。此外，上述回归正则

化方法（岭回归、Lasso 回归和 Elastic 回归）往往在数据集中的变量具有高纬度以及变量

间存在多重共线性时能够保持较好的预测效果。
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2.2.6. 偏最小二乘回归 (Partial Least Squares Regression，PLS)

偏最小二乘回归（Partial Least Squares Regression，PLS）方法在普通多元回归的基

础上结合了主成分分析 (Principal components analysis, PCA) 和典型相关分析 (Canonical

Correlation Analysis，CCA) 的思想，以解决回归分析中自变量多重共线性的问题。

考虑存在 m 个自变量 x1, x2, . . . xm。偏最小二乘回归首先在自变量集合中提出第一主

成分 t1（t1 是 x1, x2, . . . xm 的线性组合，且尽可能多地提取原自变量集中的变异信息），然

后建立因变量与 t1 的回归方程，如果方程已达到满意的精度，则算法中止。否则继续第二

主成分的提取，直到达到满意的精度。若最终提取了 r 个成分 t1, t2, . . . tr，偏最小二乘回归

将通过建立因变量与 t1, t2, . . . tr 的回归式，并还原为因变量与原自变量的回归方程。

Light et al.(2017) 选用 PLS 检验了公司特征对股票截面收益的预测能力。同样，Gu

et al.(2020)[16] 也发现 PLS 算法在美国市场股票收益预测要好于传统的 OLS 算法。

2.2.7. 支持向量机 (support vector machine)

支持向量机 (support vector machine) 是一种常用的分类算法，但当标签为连续值时，

也可用于拟合回归问题。模型通过寻求结构化风险最小来提高学习机泛化能力，实现经验

风险和置信范围的最小化，从而达到在统计样本量较少的情况下，亦能获得良好统计规律

的目的。通俗来讲，其基本模型定义为特征空间上的间隔最大的线性分类器，即支持向量

机的学习策略便是间隔最大化，最终可转化为一个凸二次规划问题的求解。SVM算法拥有

低泛化误差，可以解决高维问题等优点，但同时模型的预测结果对参数和核函数的选取非

常敏感，模型的主要参数包括：

1. 核函数类型（kernel），备选核函数类型包含线性核（linear）, 高斯核（rbf）, 多项式
核（poly）等；

2. 惩罚因子（C）；

3. 核函数对应的核系数（γ）。

2.2.8. 梯度提升树 (Gradient Boosting Decision Tree，GBDT)

梯度提升树 (Gradient Boosting Decision Tree，GBDT) 是一种迭代的决策树算法，由

多棵决策树组成，综合所有树的预测作为最终预测。该算法的核心在于每棵树学习之前所
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有树的残差；而为了消除残差，模型在残差减少的梯度 (Gradient) 方向上建立一个新的模

型。因此在 GBDT中，每个新树的建立是为了使得之前模型的残差沿梯度方向减少。此外，

决策树进行分支时以最小化平方误差为标准，对每一个特征，每一个阈值进行穷举以寻求

最优的分割点。对于训练集 Train = {(x1, y1) , (x1, y1) , . . . , (xN , yN)}，构建梯度提升树 fM (x)

的算法流程如下：

1. 初始化 fo (x) = 0；

2. 对于 m = 1, 2, . . . ,M, 计算其预测残差：

rmi = yi − fm−1 (xi) i = 1, 2, . . . ,N (6)

3. 对于 N 个残差学习得到一个回归树 T (x; ∅m)；

4. 更新 fm (x) = fm−1 (x) + Train(x; ∅m)；

5. 最终得到梯度提升树： fM (x) =
∑M

m=1 T (x; ∅m)。

GBDT在较少的调参时间情况下能够获得相对较高的预测准确率。同时由于使用的损

失函数相对稳健，GBDT 算法对异常值的鲁棒性非常强，算法的主要参数包含:� 每个弱学

习器的权重缩减系数，即学习率（δ）；� 弱学习器的最大迭代次数（N）；� 决策树最大深度

(maxdep)。现有研究中，Krauss et al.(2017)[23] 运用梯度提升树算法进行标准普尔 500 指

数成分股的运动方向预测，并根据预测结果构建投资组合，绩效明显好于市场投资组合。

2.2.9. 极端梯度提升树 (Extreme Gradient Boosting, Xgboost)

Boosting 算法以集成弱分类器的方式提高预测的稳定性和准确性，是机器学习领域中

被广泛使用的算法 (Wu et al., 2008[24])。代表性算法是由 Chen and Guestrin(2016)[25] 提

出的极端梯度提升树 (Extreme Gradient Boosting, Xgboost)。Xgboost通过 Boosting算法

来聚合作为基学习器的 CART 树算法。因此 Xgboost 具有 Boosting 算法的优点，但训练

成本低且结果更为精确。具体算法流程如下：

1. 基于训练集构建第一棵 CART 回归树，并计算出模型的残差；

2. 通过第一步计算出的残差训练下一棵 CART 回归树，再次进行残差计算；
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3. 重复 (2.) 直到最大迭代次数。

单就上述步骤而言，Xgboost同 GBDT较为相似，都是以前一次预测的残差作为下一

步训练目标，且模型参数类型设置与 GBDT 算法基本一致，但两者存在以下不同：� 在拟

合目标的设置上，Xgboost 在 GBDT 的基础上加入了正则化项，使模型具有更好的泛化

能力；� 在计算残差过程中，XGBoost 在 GBDT 的基础上加入了二阶导数，提升了残差估

计的准确性；� 在 CART 回归树的叶节点划分时，GBDT 算法采用的是最小化均方差，而

XGBoost 算法则是最大化上述方程中的正则化项。这些细节处理的不同使得 XGBoost 独

立于 GBDT 算法，在常见的机器学习任务中取得了不俗的成果。

2.2.10. 神经网络集成模型 (Ensemble Artificial Neural Network，EN-ANN)

神经网络集成模型（Ensemble Artificial Neural Network，EN-ANN）是一种基于人工

神经网络（Artificial Neural Network，ANN）的集成学习算法，主要针对单一 ANN 模型

由于初始化问题而产生的预测不稳定现象。其核心是构建多个不同初始化状态下的简单神

经网络，使得模型集成更多的可能性以提升预测结果的稳定性。在训练过程中神经网络集

成模型对每一个 ANN 都进行单独的训练和优化实现单个模型的近似最优化。本文中神经

网络集成模型的算法流程如下：

1. 初始化每一个神经网络 NN1,NN2,NN3, . . . ,NNK；

2. 在训练集中，对每一个神经网络模型以最小化均方误差作为优化目标进行参数拟合；

3. 选取训练集上均方误差前 50% 的神经网络作为预测池构建神经网络集成模型，并输
出预测池的平均预测值。

神经网络集成模型在有效提升模型稳定性的同时能对由于初始化数值选取存在偏差而

陷入局部最优解的训练器进行甄别，筛选出相对稳定的训练器进行预测，在很大程度上能

够提升了预测的鲁棒性。

2.3. 数据说明与预处理

本文选取 1985 年 1 月至 2020 年 11 月美国纽约证券交易所（NYSE）、美国证券交易

所（AMSE）、全国证券交易商自动报价系统协会（NASDAQ）的上市公司为研究样本，数
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据为月度频率。美国公司的收益率数据（月度）获取自 CRSP 数据库，我们选取“Holding

Period Return”的回报率。异象（因子）数据使用 Chen and Zimmermann(2021) [11] 开源

的美股市场 207 个异象（因子）数据1。

初始的股票池为三个市场的所有股票，我们剔除了金融、保险和房地产行业（SIC 代

码为 6000-6799 的公司），剔除了交易状态为“halted”或“suspended”或“unknown”的

公司。同时，数据存在着一定的缺失值，我们采取如下步骤进行处理：(1)对于异象 (因子)

数据, 若存在 Inf 值，将其替换成空值 (nan)，然后使用每个异象 (因子) 的横截面均值替

换空值 (nan), 若此步填充后仍然存在空值 (nan), 即将其替换为 0。(2) 若 t 月的收益数据

存在缺失值，则直接删去 t 月的所有异象 (因子) 数据与收益数据。

在剔除异常交易状态的股票、金融、保险和房地产行业的股票、处理好缺失值后，1985

年 1 月至 2020 年 11 月的有效样本为 835961 条，对其进行描述性统计如下：

[样本数据的描述性统计表, 见附录][A.6]

因子的描述性统计显示，不同因子的取值在数量级及分布上存在显著差异，可能导致

预测偏差，比如：� 量级较大的特征在预测时占据主导地位；� 数量级的差异会引起部分机

器学习算法迭代收敛速度减慢。由此，本文将训练集数据标准化，假设这些样本来自某一

均值为 0，方差为 1 的随机变量。标准化方式为：

Xscale =
X − X
σX

(7)

其中，X 和 σX 分别是变量 X 的均值和标准差。

3. 机器学习算法的有效性检验

3.1. 算法的样本外预测情况 (模型评估)

为了评估在 10 种机器学习算法下，超额异象 (因子) 预测股票未来收益的预测性能，

我们依照 Gu et al. (2020)[16] 的做法，用下式计算样本外 R2:

R2
oos = 1 −

∑
(i,t)(ri,t+1 − r̂i,t+1)2∑

(i,t) r2
i,t+1

(8)

1Chen and Zimmermann 的开源数据于此网站下载：https://www.openassetpricing.com/data/
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这样构造 R2
oos 的好处在于，对于个股的分析，用历史平均值预测未来的超额股票回报

时，其更偏向正向。将窗口期设定为 12 个月的情况下训练模型得到的 R2
oos 如下表所示：

Table 1: 机器学习算法的 R2
oos[window=12]

OLS FC Ridge Lasso EN PLS SVR EN-ANN XGBoost GBDT

-5.6E+22 -3.3E+6 -340.9% -6.0% -7.0% -3.6E+05 -9.21% -13.3% -8.27% -10.08%

由表所示，我们可以发现线性机器学习算法的 R2
oos 十分大，而非线性机器学习算法

R2
oos 较小，说明非线性机器学习算法更能刻画异象 (因子) 与收益之间的关系。

3.2. 美国市场的投资绩效

我们依据模型预测出的收益率，在每一个月的截面上对股票排序并分 10 组，分别构

建多头组合 (等权持有前 10% 的股票)、空头组合 (等权持有后 10% 的股票)、多空对冲组

合 (多头-空头) 的年化收益率，并计算每个组合的夏普比率，如下表所示:

Table 2: 投资组合绩效 (window：12months)

多头组合 多空组合 空头组合

Mean(%) 夏普比率 Mean(%) 夏普比率 Mean(%) 夏普比率

OLS 20.02% 1.0337 18.94% 1.1962 1.08% 0.0351

(5.57) (6.76) (0.29)

FC 19.89% 0.9271 16.56% 0.6928 3.34% 0.1375

(5.15) (4.11) (0.84)

Ridge 20.31% 1.0504 19.52% 1.2255 0.79% 0.0209

(5.66) (6.91) (0.21)

Lasso 22.14% 1.1265 21.70% 1.2960 0.44% 0.0035

(6.04) (7.26) (0.12)

Elastic 21.79% 1.1157 21.63% 1.3006 0.17% -0.0098
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(5.97) (7.28) (0.04)

PLS 21.23% 1.1000 19.29% 1.1387 1.94% 0.0759

(5.92) (6.74) (0.51)

SVR 21.04% 1.2594 20.91% 1.3437 0.13% -0.0107

(6.72) (7.59) (0.03)

EN-ANN 21.13% 1.0643 19.01% 1.3330 2.12% 0.0848

(5.71) (7.57) (0.01)

XGBoost 22.46% 1.1000 22.81% 1.4308 -0.36% -0.0320

(5.99) (8.48) (-0.09)

GBDT 21.47% 1.1861 19.58% 1.0349 1.89% 0.0628

(5.98) (8.11) (0.01)

观察分析 Table 1 可以发现:(1) 同为线性模型，除了 FC 模型外，线性机器学习算法

(Ridge,Lasso,ElasticNet,PLS) 均能获得较基准 OLS 回归更高的多空组合收益，且带有惩

罚项的线性机器学习算法 (Ridge,Lasso,Elastic) 有高于基准 OLS 回归的夏普比率。(2) 非

线性机器学习算法 (SVR,EN-ANN,XGBoost,GBDT) 均能获得较基准 OLS 回归更高的多

空组合收益，分别提升了 10.4%,0.3%,20.4%,3.4%, 除 GBDT 外，夏普比率也分别提升了

12.33%,11.44%,19.6%, 显示了异象 (因子) 间非线性模式的存在，其中 XGBoost 模型表现

地尤为优秀。(3)括号中展示的是投资收益的 Newey and West(1987)[26]t值，可以发现，多

空组合的收益均为 1% 显著。观察多头组合的收益，其远高于空头组合，表明多空组合的

收益主要来源于多头头寸，表现最好的基于 XGBoost 预测而构建的投资组合的收益较基

准 OLS 提升了 12.18%。
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Figure 2: 累计收益率曲线 (window=12)

绘制 10 种机器学习算法所构建的多空投资组合的累计对数收益率，与 SP500 的累计

收益率曲线做对比可以发现，整体来看由机器学习算法构建的投资组合的累计收益率曲线

更为平缓，波动较小，且每一种模型的累计收益率均大于 SP500 的累计对数收益率，非线

性机器学习算法的收益明显优于机器学习算法。图中阴影部分为 National Bureau of Eco-

nomic Research确定的衰退时期，在这几个阶段，我们可以发现 SP500的收益率呈现下跌，

而我们机器学习算法所构造的投资组合的累计收益率是波动上升的，可以说明机器学习算

法的有效性。

3.3. 检验划分不同窗口期对模型训练与投资绩效的影响

为了验证模型的稳定性, 我们也检验了窗口期 (即训练集长度) 为 3 个月，24 个月时

的模型表现，首先展示多头组合、空头组合、多空对冲组合 (多头-空头) 的年化收益率与

每个组合的夏普比率，如 Table 2 所示:
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Table 3: 投资组合绩效 (window：3months)

多头组合 多空组合 空头组合

Mean(%) 夏普比率 Mean(%) 夏普比率 Mean(%) 夏普比率

OLS 18.87% 1.1151 13.74% 0.9321 5.12% 0.2286

(6.18) (6.08) (1.38)

FC 18.41% 1.0176 14.12% 0.5723 4.30% 0.1653

(5.65) (3.85) (1.07)

Ridge 19.32% 1.1436 14.57% 0.9789 4.75% 0.2110

(6.32) (6.28) (1.29)

Lasso 20.55% 1.0316 17.33% 1.1870 3.21% 0.1339

(6.49) (6.60) (0.86)

Elastic 20.27% 1.1631 17.05% 0.9245 3.23% 0.1332

(6.35) (5.95) (0.86)

PLS 19.21% 1.0919 15.34% 0.8146 3.88% 0.1577

(6.02) (5.43) (0.99)

SVR 18.92% 1.2119 13.73% 0.8444 5.20% 0.2145

(6.65) (5.26) (1.28)

EN-ANN 18.11% 1.0386 11.96% 0.8864 6.15% 0.2698

(5.65) (5.72) (1.61)

XGBoost 21.13% 1.1691 19.18% 0.9962 1.96% 0.0660

(6.40) (6.33) (0.46)

GBDT 21.47% 1.1861 19.58% 1.0349 1.89% 0.0628

(6.49) (6.56) (0.44)

观察多空组合的收益可以发现，训练期较短时，(1) 线性机器学习算法 (Ridge,Lasso,

ElasticNet,PLS)均能获得较基准 OLS回归更高的多空组合收益，其中 Lasso和 Elastic尤
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为优秀，较基准 OLS 回归提升了 26.1%,24.1%。(2) 非线性机器学习算法表现得差异较大，

其中 SVR 与 EN-ANN 投资绩效较差，可能的原因是由于训练期过短，样本数据过少，这

两个模型效果不理想，但 XGBoost 与 GBDT 表现较好，多空收益较基准 OLS 回归提升

了 40%,42.5%。(3) 综合所有模型来看，夏普比率的差异不大，window=3 与 window=12

相比，模型训练效果较差。

Figure 3: 累计收益率曲线 (window=3)

从累计收益率曲线可以发现，非线性机器学习算法 (SVR,XGBoost,GBDT) 与线性机

器学习算法 (lasso,ridge,ElasticNet) 的累计收益率均能够跑赢 SP500 指数的累计收益率，

特别是 Lasso 和 ElasticNet 算法，是表现最好的两个线性机器学习算法，特别的，非线性

机器学习算法 EN-ANN 表现较差，与前文所述的其多空组合收益较差一致，我们判断是

由于训练期过短，样本数据不足以使复杂的神经网络训练出较好的结果。
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Table 4: 美国市场的投资绩效 (window：24months)

多头组合 多空组合 空头组合

Mean(%) 夏普比率 Mean(%) 夏普比率 Mean(%) 夏普比率

OLS 21.24% 1.1405 21.04% 1.5533 0.20% -0.0078

(6.13) (8.44) (0.05)

FC 19.35% 1.0352 15.42% 0.7284 3.93% 0.1617

(5.68) (4.28) (0.94)

Ridge 21.48% 1.1564 21.22% 1.5422 0.26% -0.0046

(6.21) (8.32) (0.07)

Lasso 13.61% 0.8210 4.96% 0.3105 8.65% 0.4668

(4.49) (1.81) (2.51)

Elastic 15.92% 0.8574 10.50% 0.5908 5.42% 0.2738

(4.63) (3.29) (1.53)

PLS 19.50% 1.0456 15.76% 0.7409 3.73% 0.1521

(5.74) (4.34) (0.89)

SVR 20.41% 1.3265 19.29% 0.9719 1.13% 0.0321

(7.12) (5.54) (0.25)

EN-ANN 21.79% 1.0782 20.56% 1.5217 1.23% 0.0434

(5.69) (8.25) (0.32)

XGBoost 20.76% 1.1046 20.05% 1.2679 0.71% 0.0164

(5.94) (7.10) (0.17)

GBDT 21.10% 1.1244 19.25% 1.2409 1.85% 0.0705

(6.05) (7.03) (0.46)

将窗口期扩展至 24 个月，与先前规律所不一致的是，OLS 基准回归的多空组合年化

收益是除 Ridge 外最大的，同时，非线性机器学习算法的效果要显著优于线性机器学习算
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法，可以说明异象 (因子)之间的确存在着非线性关系，同时，线性模型所带来的投资绩效

不比非线性模型的要差。

Figure 4: 累计收益率曲线 (window=24)

观察累计收益率曲线可以发现，Laso,ElasticNet 均有低于 SP500 收益率曲线的阶段，

不同的模型收益率曲线的高低排序，与 window=3，window=12 相比有很大差异，Ridge

和 LR 和复杂的 EN-ANN 模型同处于最高层，但线性模型 (Ridge,LR) 的累计收益率曲线

更为平缓、稳定，而神经网络模型起伏波动较大，可能是由于过拟合现象的存在。

(a) 年化收益率比较 (b) 夏普比率比较

Figure 5: 不同窗口期的投资绩效比较
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我们利用 window=3、12、24 三种情况下的年化收益率与夏普比率数据绘制热图，以

可视化他们的差异情况，观察热图，纵向来看，当我们扩展训练期从 1 个季度至 1 年时，

夏普比率与年化收益率均有显著提高，但继续扩展至 2 年时，不同的模型有不同的表现，

复杂的非线性机器学习算法有明显的提升或维持了现状，但线性机器学习算法除了 Ridge、

LR、FC外，效果均变差。横向来看，非线性机器学习算法总体优于线性机器学习算法，但

Ridge 和 LR 仍然是一个特例，可能是我们的异象 (因子) 与收益间的线性关系已经可以带

来较高的收益，但这仍然需要我们继续延长窗口期，或者进行变换样本等方式来检验这个

结论。

Table 5: 不同窗口期下机器学习算法的 R2
oos

3months 12months 24months

OLS -1.33E+23 -5.60E+22 -7.64E+22

FC -1.25E+06 -3.26E+06 -2.05E+06

Ridge -99.54% -340.89% -167.64%

Lasso -17.23% -6.01% -0.09%

Elastic -10.51% -7.00% -0.13%

PLS -1.36E+05 -3.56E+05 -2.46E+05

SVR -28.45% -9.21% -1.32%

EN-ANN -50.62% -13.30% -7.56%

XGBoost -12.42% -8.27% -2.61%

GBDT -14.66% -10.08% -3.57%

通过对比计算得出的不同窗口期下机器学习算法的 R2
oos，我们可以发现，虽然三个

window的 R2
oos 均为负数，但总体来看，扩展训练期会提高模型的拟合水平，R2

oos 有明显地

向 0接近的形势。纵向来看，线性机器学习算法 (LR,FC,PLS,Ridge)的 R2
oos 非常大，说明

其预测的效果并不是十分理想，而非线性机器学习算法 (SVR,EN-ANN,XGBoost,GBDT)

的 R2
oos 较小，说明预测预测效果较好。综合 R2

oos 与前文所述的投资绩效，可以发现 Ridge

的综合多空收益较大，但其 R2
oos 较小，说明 Ridge 方法作为线性机器学习算法，预测性能
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并没有达到最优，但其选股能力较为优秀。

4. 异象 (因子) 的重要性检验

本部分探究我们的第二个研究问题：“哪个因子更重要?”，由于时间与算力的限制，仅

采用 Linear Regresion(LR) 一种检验方法，计算除去某一单个因子后的年化收益的损失来

衡量该因子的重要性，将收益损失最大的因子重要性记为 100%，剩余因子的重要性数值则

按照收益损失最大值折算得到。本文筛选出重要性数值位于前 20 的因子, 如条形图所示:

Figure 6: Top 20 重要的异象 (因子)

这 20个重要的因子按顺序分别为:STreversal, IndRetBig, Announcement Return, Coskew-

ness, IndIPO, NOA, OperProf, EP, Conglomerate, roaq, FirmAge, MS, BM, Mom12mOffSeason,

Beta, DelLTl, DownRecomm, EBM, ShortInterest, OrderBacklogChg，我们参考Appendix B对

这 20 个异象 (因子) 的详细定义，可以发现，STreversal, IndRetBig, AnnouncementRe-

turn,Coskewness 均与收益率直接或间接相关，可以发现与预测收益率相关的重要因子可

能直接地与收益相关，但这个结论仍需要检验，进一步可以使用本文的其余 9 种机器学习

算法，以相同的思想进行检验，查看哪些因子被纳入 Top20 的次数较多，可以较有把握地

说明那些因子更为重要。
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Appendix A. 样本数据的描述性统计

count mean std min 50% max

AbnormalAccruals 1935 -0.006 0.058 -0.826 -0.006 0.778

Accruals 1935 0.005 0.085 -1.197 0.005 1.038

AccrualsBM 1935 0.722 0.051 0.005 0.722 1.000

Activism1 1935 15.289 0.242 12.227 15.290 18.200

Activism2 1935 13.256 1.101 7.211 13.255 42.112

AdExp 1935 0.036 0.039 0.000 0.038 1.290

AgeIPO 1935 27.838 6.083 1.252 27.693 117.972

AM 1935 12.391 26.410 0.050 12.580 788.313

AnalystRevision 1935 1.001 0.650 -12.984 1.001 16.838

AnalystValue 1935 0.885 0.277 -2.424 0.891 5.907

AnnouncementReturn 1935 0.002 0.048 -0.452 0.002 0.625

AOP 1935 -6.533 52.547 -2162.342 -6.563 5.625

AssetGrowth 1935 -0.174 0.786 -28.508 -0.174 0.854

Beta 1935 0.650 0.500 -1.542 0.578 5.093

BetaFP 1935 0.656 0.431 0.001 0.613 3.645

BetaLiquidityPS 1935 -0.026 0.245 -2.014 -0.024 2.122

BetaTailRisk 1935 0.598 0.223 -0.729 0.596 2.614

betaVIX 1935 0.000 0.010 -0.115 0.000 0.114

BidAskSpread 1935 0.014 0.021 0.000 0.008 0.372

BM 1935 -0.353 0.486 -5.096 -0.350 2.908

BMdec 1935 3.601 27.667 -28.422 2.910 1017.007

BookLeverage 1935 -10.146 51.146 -1762.908 -10.175 436.998

BPEBM 1935 1.769 51.827 -359.167 1.682 2007.383
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BrandInvest 1935 -1904.519 375.182 -15789.007 -1905.982 -10.475

Cash 1935 0.099 0.075 0.000 0.100 0.904

CashProd 1935 91.576 1319.564 -4299.749 87.925 56473.076

CBOperProf 1935 -0.001 0.000 -0.001 -0.001 -0.001

CF 1935 -0.052 0.991 -32.534 -0.051 4.279

cfp 1935 0.090 0.890 -18.520 0.085 21.140

ChangeInRecommendation 1935 -0.017 0.239 -2.112 -0.017 2.114

ChAssetTurnover 1935 0.236 32.251 -725.898 0.264 769.918

ChEQ 1935 -1.258 2.447 -99.017 -1.252 -0.079

ChForecastAccrual 1935 0.492 0.174 0.000 0.490 1.000

ChInv 1935 -0.003 0.038 -0.689 -0.003 0.637

ChInvIA 1935
-310349

688

213961

0217399

-408255

03316422

-309701

727

610562

34554270

ChNAnalyst 1935 -0.099 0.030 -0.618 -0.099 -0.012

ChNNCOA 1935 -0.002 0.101 -1.472 -0.003 1.366

ChNWC 1935 -0.003 0.081 -1.164 -0.003 1.025

ChTax 1935 0.000 0.015 -0.390 0.000 0.248

CitationsRD 1935 0.056 0.001 0.043 0.056 0.084

CompEquIss 1935 0.609 1.066 -2.434 0.612 32.629

CompositeDebtIssuance 1935 -0.534 0.627 -7.088 -0.542 5.654

ConsRecomm 1935 -0.308 0.052 -0.830 -0.308 -0.075

ConvDebt 1935 -0.067 0.178 -1.000 -0.033 0.000

CoskewACX 1935 0.172 0.200 -0.563 0.164 0.909

Coskewness 1935 0.273 0.287 -0.916 0.281 1.306

CredRatDG 1935 -0.019 0.072 -0.864 -0.017 -0.002

CustomerMomentum 1935 0.011 0.012 -0.166 0.011 0.205
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DebtIssuance 1935 -0.405 0.296 -1.000 -0.412 0.000

DelBreadth 1935 0.122 0.356 -3.934 0.120 6.559

DelCOA 1935 0.002 0.062 -0.900 0.002 0.899

DelCOL 1935 0.004 0.069 -0.887 0.004 1.001

DelDRC 1935 0.007 0.002 -0.014 0.007 0.055

DelEqu 1935 -0.016 0.078 -1.129 -0.016 1.084

DelFINL 1935 -0.026 0.095 -1.231 -0.026 1.197

DelLTI 1935 -0.030 0.099 -1.221 -0.029 1.036

DelNetFin 1935 0.006 0.105 -1.162 0.005 1.168

DivInit 1935 0.031 0.121 0.000 0.013 1.000

DivOmit 1935 -0.006 0.053 -0.956 -0.003 0.000

DivSeason 1935 0.443 0.294 0.000 0.441 1.000

DivYieldST 1935 0.589 0.549 0.000 0.587 3.000

dNoa 1935 -0.085 0.575 -20.695 -0.084 1.313

DolVol 1935 -1.933 2.407 -9.919 -1.880 6.551

DownRecomm 1935 -0.359 0.107 -0.843 -0.359 -0.087

EarningsConsistency 1935 0.131 0.528 -8.449 0.130 12.675

EarningsForecastDisparity 1935 38.031 160.597 -1122.297 37.359 5208.593

EarningsStreak 1935 -0.035 0.151 -5.531 -0.036 0.261

EarningsSurprise 1935
-310082

746865

259935

15273811

-693935

483357427

-428406

491915

693519

000448200

EarnSupBig 1935 -5927.539 7160.646 -17230.396 -5213.823 0.527

EBM 1935 2.723 51.501 -352.017 2.625 2001.085

EntMult 1935 -15.354 40.621 -1543.817 -15.350 53.778

EP 1935 0.086 0.056 0.001 0.086 1.603

EquityDuration 1935 -443.299 7993.193 -342059.352 -269.138 4387.171
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ExchSwitch 1935 -0.010 0.067 -0.945 -0.004 0.000

ExclExp 1935 -0.011 0.175 -2.182 -0.011 1.486

FEPS 1935 9.848 100.266 -9.522 10.223 4282.303

fgr5yrLag 1935 -13.687 2.008 -60.449 -13.688 1.334

FirmAge 1935 -195.781 55.000 -811.722 -195.600 -2.903

FirmAgeMom 1935 0.073 0.060 -0.448 0.073 1.091

ForecastDispersion 1935 -0.148 0.321 -11.051 -0.147 0.000

FR 1935 -0.008 0.053 -1.243 -0.007 0.899

Frontier 1935 -0.046 0.141 -2.646 -0.046 2.243

Governance 1935 -9.181 0.426 -11.379 -9.182 -7.275

GP 1935 0.191 0.068 -0.936 0.191 1.597

GrAdExp 1935 -0.097 0.128 -2.074 -0.099 1.586

grcapx 1935 -1.334 22.663 -644.919 -1.355 358.991

grcapx3y 1935 -1.746 11.666 -379.768 -1.729 166.265

GrLTNOA 1935 0.011 0.092 -1.308 0.011 1.507

GrSaleToGrInv 1935 -6.114 54.537 -2223.692 -6.006 17.376

GrSaleToGrOverhead 1935 0.043 0.946 -6.161 0.042 35.071

Herf 1935 -0.219 0.168 -1.493 -0.217 -0.021

HerfAsset 1935 -0.221 0.131 -1.000 -0.223 -0.032

HerfBE 1935 -0.232 0.334 -9.247 -0.235 -0.028

High52 1935 0.849 0.164 0.063 0.884 1.616

hire 1935 -0.043 0.177 -1.993 -0.042 1.881

IdioRisk 1935 -0.020 0.021 -0.348 -0.015 0.000

IdioVol3F 1935 -0.018 0.018 -0.301 -0.013 0.000

IdioVolAHT 1935 -0.021 0.017 -0.258 -0.017 -0.001

Illiquidity 1935 0.000 0.000 0.000 0.000 0.002
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IndIPO 1935 -0.081 0.192 -1.000 -0.038 0.000

IndMom 1935 0.075 0.063 -0.035 0.080 0.209

IndRetBig 1935 0.016 0.022 -0.020 0.015 0.055

IntanBM 1935 0.111 0.298 -3.291 0.108 2.598

IntanCFP 1935 -0.022 0.203 -5.207 -0.024 1.681

IntanEP 1935 0.010 0.227 -5.779 0.008 1.840

IntanSP 1935 -0.221 0.583 -6.855 -0.232 4.121

IntMom 1935 0.065 0.207 -0.784 0.059 3.290

Investment 1935 -1.064 0.654 -11.122 -1.068 8.616

InvestPPEInv 1935 -0.045 0.165 -5.780 -0.044 0.813

InvGrowth 1935 -0.772 0.599 -23.564 -0.775 0.870

IO_ShortInterest 1935 74.370 1.370 46.636 74.369 102.693

iomom_cust 1935 0.739 0.085 0.043 0.738 0.992

iomom_supp 1935 0.769 0.077 0.048 0.768 0.992

Leverage 1935 10.059 20.102 0.003 10.167 610.963

LRreversal 1935 -0.340 0.594 -14.025 -0.342 0.929

MaxRet 1935 -0.048 0.061 -1.211 -0.034 -0.001

MeanRankRevGrowth 1935 2598.124 477.070 385.449 2600.611 4763.221

Mom12m 1935 0.127 0.339 -0.883 0.117 6.564

Mom12mOffSeason 1935 0.011 0.028 -0.183 0.011 0.298

Mom6m 1935 0.056 0.198 -0.795 0.050 2.989

Mom6mJunk 1935 0.058 0.132 -0.658 0.057 2.175

MomOffSeason 1935 -0.012 0.012 -0.139 -0.012 0.088

MomOffSeason06YrPlus 1935 -0.013 0.012 -0.139 -0.013 0.202

MomOffSeason11YrPlus 1935 -0.013 0.009 -0.123 -0.013 0.094

MomOffSeason16YrPlus 1935 -0.014 0.005 -0.075 -0.014 0.029
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MomRev 1935 0.570 0.062 0.001 0.570 1.000

MomSeason 1935 0.012 0.045 -0.310 0.012 0.583

MomSeason06YrPlus 1935 0.013 0.035 -0.277 0.013 0.468

MomSeason11YrPlus 1935 0.012 0.029 -0.251 0.013 0.419

MomSeason16YrPlus 1935 0.012 0.024 -0.225 0.012 0.360

MomSeasonShort 1935 0.011 0.079 -0.496 0.010 1.084

MomVol 1935 5.855 0.772 1.025 5.852 9.995

MRreversal 1935 -0.067 0.200 -3.228 -0.063 0.766

MS 1935 3.775 0.224 1.007 3.775 5.986

NetDebtFinance 1935 -0.015 0.064 -0.780 -0.015 0.663

NetDebtPrice 1935 -1.920 1.225 -41.555 -1.918 9.780

NetEquityFinance 1935 -0.010 0.044 -0.745 -0.008 0.367

NetPayoutYield 1935 -0.001 0.025 -0.617 -0.001 0.486

NOA 1935 -0.378 0.627 -19.044 -0.378 2.165

NumEarnIncrease 1935 1.285 1.238 0.000 1.287 7.993

OperProf 1935 0.052 0.490 -16.742 0.052 5.564

OperProfRD 1935 -0.002 0.000 -0.002 -0.002 -0.002

OPLeverage 1935 0.226 0.397 -0.016 0.219 9.868

OptionVolume1 1935 -37589.433 209138.931 -8655377.522 -36277.785 -11169.285

OptionVolume2 1935 -1.447 1.271 -46.694 -1.438 -0.452

OrderBacklog 1935 -0.344 0.052 -2.112 -0.344 -0.008

OrderBacklogChg 1935 -0.005 0.021 -0.478 -0.005 0.492

OrgCap 1935 -0.032 0.128 -0.836 -0.032 3.598

OScore 1935 -0.174 0.031 -0.904 -0.174 0.000

PatentsRD 1935 0.119 0.002 0.090 0.119 0.170

PayoutYield 1935 0.155 0.068 0.001 0.154 2.574
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PctAcc 1935 2.476 36.229 -620.124 2.425 1042.457

PctTotAcc 1935 -3.098 39.889 -1180.752 -3.033 605.859

PredictedFE 1935 -0.047 0.008 -0.106 -0.047 -0.001

PriceDelayRsq 1935 0.414 0.310 0.002 0.332 1.000

PriceDelaySlope 1935 1.846 131.412 -1978.953 0.658 4274.398

PriceDelayTstat 1935 1.840 1.291 -2.179 1.850 5.535

ProbInformedTrading 1935 0.286 0.010 0.194 0.286 0.439

PS 1935 5.375 0.343 1.419 5.375 8.197

RD 1935 0.031 0.010 0.000 0.031 0.350

RDAbility 1935 -1.091 0.051 -2.150 -1.092 0.045

RDcap 1935 0.008 0.016 0.000 0.008 0.596

RDIPO 1935 -0.007 0.055 -0.929 -0.003 0.000

RDS 1935 -72.593 1433.258 -25644.704 -69.370 31377.821

realestate 1935 0.000 0.045 -0.408 0.000 0.588

Recomm_ShortInterest 1935 0.797 0.031 0.218 0.796 0.950

ResidualMomentum 1935 -0.026 0.264 -1.513 -0.025 1.213

retConglomerate 1935 0.012 0.013 -0.085 0.012 0.137

ReturnSkew 1935 -0.097 0.818 -4.088 -0.068 3.708

ReturnSkew3F 1935 -0.091 0.749 -3.822 -0.069 3.510

REV6 1935 -0.030 0.032 -1.018 -0.030 0.201

RevenueSurprise 1935 0.268 3.681 -47.085 0.264 115.685

RIO_Disp 1935 3.468 0.218 1.063 3.468 5.000

RIO_MB 1935 2.596 0.161 1.000 2.596 4.947

RIO_Turnover 1935 3.214 0.211 1.049 3.214 4.998

RIO_Volatility 1935 3.327 0.188 1.016 3.327 4.998

roaq 1935 0.007 0.087 -0.515 0.007 3.123
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RoE 1935 0.345 6.666 -36.744 0.249 272.519

sfe 1935 0.075 0.046 -1.203 0.075 0.360

ShareIss1Y 1935 -0.401 3.292 -128.110 -0.346 0.985

ShareIss5Y 1935 -4.044 24.426 -967.502 -4.028 0.993

ShareRepurchase 1935 0.362 0.334 0.000 0.318 1.000

ShareVol 1935 -0.188 0.140 -1.000 -0.193 0.000

ShortInterest 1935 -21008.465 17733.383 -300431.875 -20091.190 -1.625

sinAlgo 1935 1.000 0.000 1.000 1.000 1.000

skew1 1935 -0.073 0.016 -0.371 -0.073 0.057

SmileSlope 1935 0.001 0.035 -0.555 0.001 0.557

SP 1935 1.567 3.434 -1.333 1.609 108.522

Spinoff 1935 0.025 0.109 0.000 0.012 1.000

std_turn 1935 -0.101 0.694 -27.174 -0.089 -0.001

SurpriseRD 1935 0.047 0.060 0.000 0.047 1.000

tang 1935 0.598 0.020 0.189 0.598 0.903

Tax 1935 0.873 4.288 -56.006 0.882 142.991

TotalAccruals 1935 -0.022 0.153 -4.051 -0.022 1.394

TrendFactor 1935 0.194 0.044 0.116 0.189 0.278

UpRecomm 1935 0.347 0.106 0.084 0.347 0.840

VarCF 1935 -1.772 16.099 -629.953 -1.891 0.000

VolMkt 1935 -0.136 1.029 -35.527 -0.054 0.000

VolSD 1935 -3.826 29.020 -977.293 -0.502 -0.002

VolumeTrend 1935 -0.006 0.017 -0.064 -0.005 0.055

XFIN 1935 0.003 0.238 -1.244 0.004 7.896

zerotrade 1935 1.728 3.052 0.000 0.318 17.370

zerotradeAlt1 1935 1.817 3.416 0.000 0.156 19.108
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zerotradeAlt12 1935 1.662 2.852 0.000 0.457 16.571

STreversal 1935 -0.967 9.955 -129.659 -0.551 59.768

Price 1935 -2.707 0.945 -10.788 -2.725 1.960

Size 1935 -11.995 1.887 -18.389 -11.900 -5.315
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Appendix B. 重要性排名前 20 的异象 (因子) 的定义

• STreversal：Stock return (ret) over the previous month.

• IndRetBig：Average monthly return (ret) of the 30% largest companies by market

value of equity in the same Fama-French 48 industry. Exclude the largest 30% of

companies for IndRetBig (not to compute the anomaly!)

• AnnouncementReturn：Get announcement date for quarterly earnings from IBES (fpi

= 6). AnnouncementReturn is the sum of (ret - mktrf + rf) from two days before an

earnings announcement to 1 days after the announcement.

• Coskewness：Signal is the sample counterpart of E[r̃itr̃2
mt]/(S D[r̃it]S D[r̃mt]2 where r̃it is

the de-meaned stock return and r̃mt is the de-meaned market excess return. Signal is

computed using the past year of daily data, and using the NYSE CRSP VW index for

the market (dsia), with returns continuously compounded. See code for details.

• IndIPO：1 if IPO in the past 6-36 months. 0 otherwise. IPO dates are taken from

Jay Ritter’s IPO data available at: http://bear.warrington.ufl.edu/ritter/ipodata.htm.

Missing IPO dates imply IndIPO = 0

• NOA：Difference between operating assets and operating liabilities, scaled by lagged

total assets. Operating assets are total assets (at) minus cash- and short-term invest-

ments (che), operating liabilities are total assets minus long-term debt (dltt), minority

interest (mib), deferred charges (dc) and book equity (ceq).

• OperProf：Revenue (revt) minus cost (cogs) - administrative expenses (xsga) - interest

expenses (xint), scaled by book value of equity (ceq). Exclude smallest size tercile.

• EP:ib / lag(market value of equity, 6 months). NYSE stocks only. Exclude if EP <

0. Lag simulates the Dec 31 market equity used in original paper
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• Conglomerate:Identify conglomerate firms as those with multiple OPSEG or BUSSEG

entries in the Compustat segment data (and require that at least 80% of firm’s total

assets are covered by segment data). Compute monthly stock return at the 2-digit

SIC level for stand-alone (non-conglomerate) firms only, and match those returns to

conglomerates’ segments. Compute weighted conglomerate return as the industry

return of stand-alone companies, weighted with a conglomerate’s total sales in each

industry.

• roaq：This is like a more timely version of the other profitability measures. Inter-

estingly, they don’t cite Fama French 2006, nor Novy Marx 2013. MP have a very

slightly different formulation.

• FirmAge：OP uses special NYSE archive data that we lack.

• MS：MS is only evaluated for low BM firms and comes from combining three signals

related to profitability and cash flow, two signals related to income volatility, and three

signals related to investment.

• BM：Log of annual book equity (ceq) over market equity.

• Mom12mOffSeason：This acronym has a different form than the other off season Heston

and Sadka ones because its behavior is distinct. The other off season signals behave

like long-term reversal.

• Beta：Coefficient of a 60-month rolling window regression of monthly stock returns

minus the riskfree rate on market return minus the risk free rate (ewretd - rf). Exclude

if estimate based on less than 20 months of returns.

• DelLTl：Difference in investment and advances (ivao) between years t-1 and t, scaled

by average total assets (at) in years t-1 and t.
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• DownRecomm：Keep fpi = 1. Binary variable equal to 1 if mean analyst earnings

forecast for the next quarter (meanest) has improved over the previous month, and 0

otherwise.

• EBM：(ceq + che - dltt - dlc - dc - dvpa+ tstkp ) / (mve_c + che - dltt - dlc - dc -

dvpa+ tstkp). Exclude if price less than 5.

• ShortInterest：Short-interest from Compustat (shortint) scaled by shares outstanding

(shrout). Short-interest data are available bi-weekly with a four day lag. We use

the mid-month observation to make sure data would be available in real time. OP

uses Asquith and Meulbroek’s database, which covers all of NYSE and AMEX. We’re

unsure of the quality of our Compustat data, especially since it is missing many values

pre-2003. However, the missing pre-2003 is mostly NASDAQ. According to Rapach,

Ringgenberg, and Zhou 2016, Compustat added the short interest to their dataset in

2014.

• OrderBacklogChg：Define normalized order backlog as order backlog (ob) divided by

average total assets (at) in years t-1 and t. Exclude if order backlog is 0. Signal is

normalized order backlog minus normalized order backlog one year ago.
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